Versatile Video Coding: Coding tools for 360-degree video

HODA ROODAKI
HROODAKI@KNTU.AC.IR
ASSISTANT PROFESSOR
K. N. TOOSI UNIVERSITY OF TECHNOLOGY
TEHRAN, IRAN
Outline

- Introduction
 - Standardization development and process

- Versatile Video Coding Development
 - Joint Call for Proposals Outcome

- Coding Tools
 - Versatile Video Coding Test Model
Video coding standardization organizations

- ISO/IEC MPEG = Moving Picture Experts Group
- ITU-T VCEG = Video Coding Experts Group
- JVT = “Joint Video Team” collaborative team of MPEG & VCEG, responsible for developing Advanced Video Coding (AVC), documents and software publicly available
- JCT-VC = “Joint Collaborative Team on Video Coding” team of MPEG & VCEG, responsible for developing High Efficiency Video Coding (HEVC), documents and software publicly available
- JVET = “Joint Video Experts Team” responsible for developing Versatile Video Coding (VVC), documents and software publicly available
The scope of video standardization

- Only Specifications of the Bitstream and Decoder are standardized:
 - Permits optimization beyond the obvious
 - Permits complexity reduction for implementability
Video coding concept

Input Frame 1 | DCT | Quantized | Reconstructed Frame 1 (Inverse DCT and Inverse Q)

Input → DCT → Quantizer → EntropyCoder → Bitstream

Motion Estimation → Frame Buffer → Motion Compensation

Inverse DCT, Q → + → EntropyCoder → Bitstream

010011101001...
Video coding concept

Input Frame 2

Reconstructed Frame 1 (in buffer)

Comparison
Video coding concept
Performance history of standard generations

Bit-rate Reduction: 50%
HEVC spatial coding structures

- Coding Tree Unit (CTU)
 - Corresponds to macroblocks in earlier coding standards.
 - Maximum CTU size: 64×64 pixels
 - Split into Coding Units (CU)

- Coding Unit (CU)
 - CU size 64x64, 32x32, 16x16, 8x8
 - For Intra or inter coding mode decision
 - Split into Prediction Units (PUs) and Transform Units (TUs)

- Prediction Unit (PU), the elementary unit for predication

- Transform Unit (TU), the units for transform and quantization
 - TU size 4x4, 8x8, 16x16, 32x32 DCT, and 4x4 DST
Motivation for improved video compression: “Spatial Resolution”

- **SD (PAL)**
 - 720 x 576
 - 0.414MPs
- **HDTV 720p**
 - 1280 x 720
 - 0.922MPs
- **HDTV 1080i**
 - 1920 x 1080
 - 2.027MPs
- **Digital Cinema 2K**
 - 2048 x 1080
 - 2.21MPs
- **UHDTV 1**
 - 3840 x 2160
 - 9.3MPs
- **4K**
 - 4096 x 2160
 - 11.64MPs
- **UHDTV 2**
 - 7680 x 4320
 - 33.18MPs
- **8K**
 - 8192 x 4320
 - 55.39MPs

- **Wider Viewing Angle**
- **More Immersive**
Motivation for improved video compression: "HFR (High Frame Rate)"

Increased perceived motion artifacts

Higher frame rates is needed
50fps minimum
Motivation for improved video compression: “WCG (Wide Color Gamut)”

- Deeper Colors
- More Realistic Pictures
- More Colorful
Motivation for improved video compression: “HDR (High Dynamic Range)“
Motivation for improved video compression: multi-view, 360° video
Versatile Video Coding (VVC)

- Necessary video data rate grows faster than feasible network transport capacities
- Better video compression (50% rate of current HEVC) needed, even after availability of 5G
Block partitioning

- Root Size 128×128 (64x64 in HEVC)

- 1st Tree
 - Quad Split

- 2nd Tree
 - Binary Split
 - Ternary Split

Quad/binary/ternary partitioning
360° video

- New omnidirectional cameras allow acquiring panoramic video (by mosaic stitching)
- Appropriate rendering to a head mounted display allows adapting the viewpoint according to head movements in real-time
- With appropriate projection, the panorama can be packed into a 2D frame
Multidirectional Camera
360° video

Step 1: multi-camera array captures video, then image stitching is applied to obtain spherical video

Step 2: spherical video is "unfolded" to 2D plane, e.g. using the equirectangular projection

Step 3: 2D video coding, packaging and delivery
360° video: panorama stitching

- Stitching requires registration
 - Identification of matching key points

- To mask artifacts
 - Some filtering/hole filling may be necessary
 - In video: avoid temporal variation of stitching path
360° video: projection formats

- Cubemap projection with 3x2 packing
 - 6 Faces can be treated as rectangular video
360° video: projection formats

- Equirectangular projection
 - The whole sphere is projected into a rectangular picture
360° video specific coding tools

- Projection formats from the family of cubemaps show best compression performance
 - They however suffer from visibility of face boundaries, which grow larger with decreased compression quality

- Two problems and proposed solutions:
 - Packed/projected neighbors which are no physical/spherical neighbors:
 - Solution: disable coding tools over face boundaries, such as prediction, filtering,...
 - Physical/spherical neighbors which are no packed/projected neighbors:
 - Solution: connect samples from disparate positions in the frame for better prediction, performing filtering,...
The proposed VVC Coding Tools

- **360-video specific**
 - Motivation: Special characteristics of 360 content
 - 360° symmetry not exploited by current codecs
 - Motion across face boundaries possible
360° video coding tool: face extension

- Compression of 360° video is dependent on projection, which with translational block-wise motion compensation can cause geometrical errors
 - Solution: Face extension
360° video coding tools – Second proposal
Corrected deblocking filter

- Reference samples of blocks at face boundaries changed.
 - Solution: Samples are chosen according to 3D cube geometry not just from top or left.
Research Area

- Various parts of VVC Standard
 - Intra-Picture Prediction
 - Intra-Picture Prediction by neural networks (NN)
 - Inter-Picture Prediction:
 - Non rectangular partitioning
 - Geometric (GEO) partitioning

- 360 Video
 - Projection
 - Quality Assessment
JVET AHG

- Test model software development
- Test material and visual assessment
- Coding of HDR material
- Neural Network in video coding
- Encoding algorithm optimization
- Quantization control

http://phenix.it-sudparis.eu/jvet/
Reference

- http://phenix.it-sudparis.eu/jvet/