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Traditional Image Compression

Next few Images are courtesy of Johannes Balle, Google.
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ML-based Image Compression
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A Taste of CNN Compression

@ Auto-encoder based compression
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ML-based Image Compression




How does it look?

original nonlinear transform

JPEG JPEG 2000
Balle, “Efficient Nonlinear Transforms for Lossy Image Compression”, PCS 2018.




How fast is 1t?
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Power Constrained Video Coding

SVM-Based Power allocation
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Power Constrained Video Coding
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image quality assessment for Monte Carlo rendered images.

reference

J. Whittle,et al. " A deep learning approach to no

CGV(C, 2018.
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QoE Estimation using RNN
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Quality Enhancement/Restoration




Generative Adversarial Network (GAN)

https://affinelayer.com/pixsrv/
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Counterfeiter prints fake money. It is labelled as fake for . )
BNY process police training. Sometimes, the counterfeiter attempts to The police are trained to spot real from fake money.
fool the police by labelling the fake money as real. Sometimes, the police give feedback to the counterfeiter

why the money is fake.

https://dzone.com/articles/working-principles-of-generative-adversarial-netwo
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Image Enhancement using GAN

Generator A

Probability of
being fake

DiscriminatorY
C. Ledig et al., "Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network," CVPR 2017.
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VR Streaming
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